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This paper reports an experimental study on the correlation between the deviation from Gaussianity of the
probability density function �PDF� of a fluctuating scalar and the dependence of the scalar dissipation on the
scalar itself in turbulent flows. The study demonstrates that the departure of the scalar PDF from Gaussianity
reflects the degree to which the dissipation rate depends statistically on the scalar. Of important significance,
present results obtained from wake and jet flows, together with those deduced from previous work on various
turbulent flows, appear to point to a generic expression for the total correlation. This expression suggests that
the analytical result of O’Brien and Jiang �Phys. Fluids A 3, 3121 �1991��, derived for homogeneous turbu-
lence, should be also valid for inhomogeneous turbulence. That is, the statistical independence of the scalar
dissipation and the scalar itself appears to act as the sufficient and necessary condition for the scalar PDF to be
Gaussian in any stationary turbulence. It follows that the independence assumption, often used in combustion
modeling, is reasonable only in the flow region where the scalar PDF is closely Gaussian.
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I. INTRODUCTION

The advantages of the probability density function �PDF�
method for statistical description of reacting turbulent flows
were indicated by Hawthorne et al. �1� nearly 60 years ago.
Since then, PDF methods have been investigated and used
extensively �see, e.g., Pope �2,3�, O’Brien �4� and Libby and
Williams �5��. PDFs of turbulent �velocity and scalar� quan-
tities themselves have received attention, too, with both ex-
perimental �e.g. �6–10�� and numerical �e.g. �11–13�� data
reported. It was suggested that, in general, the passive scalar
PDF is non-Gaussian, and not fully determined by the ad-
vecting velocity field �9–11�. This has changed the classic
notion that the statistics of the passive scalar field are Gauss-
ian and faithfully reflect the velocity field in homogeneous
turbulence �14�.

The experimental observation of the temperature PDF
with exponential tails in Rayleigh-Benard convection
�15–17� drawn attention to the joint statistics of the scalar
fluctuation � and its dissipation rate �� ������ /�xi���� /�xi�,
where � is the molecular diffusivity and i=1,2 ,3� in various
turbulent flows in the 1990s �6–13�. Concurrently, theorists
were also stimulated to study the analytical form of the sca-
lar PDF �18–23�. Sinai and Yakhot �18� found a relation for
a passive scalar � in homogeneous decaying turbulence with-
out a mean gradient, expressing the limiting scalar PDF
�t→ � � in terms of ��� ���, the conditional expectation of ��

based on particular values of �. A similar PDF form was
obtained for nondecaying homogeneous turbulence with a
constant mean scalar gradient �19�. For plane turbulent shear
flows with a high mean gradient, Klimenko �20� applied
boundary layer asymptotic analysis and obtained an approxi-
mation of the scalar PDF which is similar to the form of
Sinai and Yakhot �18�. It is also similar to the form of the
PDF suggested by Kuznetsov and Sabelnikov �21� for high-
gradient turbulent shear flows. Pope and Ching �22� have
derived an exact expression relating the PDF of any station-

ary random process ��t� and the conditional expectation of
��� /�t�2. Since �� /�t in turbulence is correlated to the spatial
�� /�xi through the governing equation, statistically ��� /�t�2

is never independent of �� �10�. That is, ���� /�t�2 ��� must be
correlated with ��� ���; hence the PDF of � should be gener-
ally connected to ��� ���. In this context, it is expected that
the non-Gaussian behavior of � should be controlled largely
by the statistical dependence of �� and �, irrespective of flow
type.

The motivation of the present research stemmed from
both the analytical work �18–23� and previous observations
of the non-Gaussian scalar in various flows. There are two
specific aims for this paper. The first is to examine the de-
tailed statistical dependence of �� on � by directly measuring
��� ��� in two turbulent flows, i.e., a circular cylinder wake
and a round jet �through their center planes�. The second aim
is to investigate the correlation between this dependence and
the departure of the PDF from Gaussian in these flows. The
passive temperature was selected to act as a scalar advected
by turbulent flows.

II. EXPERIMENTAL DESCRIPTION

For generating a wake flow, a circular �brass� cylinder of
diameter Dw=12 mm was placed in a free stream, with
U�	4 m/s, in a close-return, low-turbulence �	0.05% �
wind tunnel with a 3-meters-long �rectangular� working sec-
tion �640 mm�360 mm�. The cylinder was installed in the
midplane and spanned the full width of the working section,
200 mm from the exit plane of the contraction. As a result,
there was a blockage of about 3.3% and an aspect ratio of
53.3. The cylinder was slightly heated so that temperature
above ambient could be treated as a passive scalar in the near
wake. The Reynolds number Rew ��U�Dw /�� for the present
wake was approximately 3200.

For a jet flow, a smooth contraction nozzle of diameter
Dj =14 mm was used; see Mi et al. �24� for a more detailed
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description of the nozzle. The original air through the verti-
cal nozzle was warmed by a heater before entering the jet
facility so that the jet initial temperature was about 40 °C
above ambient. The exit Reynolds number Rej ��UoDj /�,
where Uo is the exit bulk velocity� was about 16 000.

Present measurements were conducted between x1 /Dw
=10 and x1 /Dw=100 in the wake �across which the Taylor-
microscale-based Reynolds number Re�	10–70� and be-
tween x1 /Dj =20 and 70 in the jet �Re�	20–200�. Here x1 is
the streamwise coordinate or distance from the cylinder axis
�wake� or the nozzle exit �jet�, whereas x2 and x3 below are
the lateral and spanwise coordinates for the wake or radial
and azimuthal coordinates for the jet.

The temperature fluctuation � and its spatial derivatives
�� /�x1 and �� /�x2 were simultaneously measured using a
three-cold-wire probe. The Wollaston wire �Pt-10%Rh� was
used, with diameter of 0.63 	m and effective length of about
0.6–0.7 mm. All the wires were aligned in the spanwise
�wake� or azimuthal �jet� x3 direction; wires 1 and 2 were
separated in the lateral �wake� or radial �jet� x2 direction by

x2	0.8 mm in an �x2 ,x3� plane and wire 3 was placed

x1	0.8 mm downstream behind wire 2. The Bachelor
scale ��B� measured on the wake centerline was about
0.3 mm at x1 /Dw=20 and 0.5 mm at x1 /Dw=100. On the jet
axis, �B was approximately 0.4 mm at x1 /Dj =70. Accord-
ingly, the magnitudes of 
x1 and 
x2 are approximately
�1.6–3��B on the wake centerline and �2–5��B on the jet
axis, where �B is minimum at any given value of x1 in both
flows. That is, the wire separations should be adequate,
though not perfect, for obtaining the derivatives �� /�x1 and
�� /�x2 by using the finite difference ratios 
� /
x1 and

� /
x2 �Mi and Nathan �25��.

The wires were operated by in-house constant current cir-
cuits supplying 0.1 mA to each wire. The temperature sig-
nals from the circuits were offset, amplified, and then digi-
tized using a multichannel, 12 bit analog/digital converter
and a personal computer. The signals were low-pass filtered
at a cutoff frequency fc chosen on site by viewing the signal
time-derivative spectrum �cf. Antonia et al. �26�� and
sampled at 2fc. The record durations were about 50–60 s,
which are sufficient to ensure the convergence of the high-
order moments.

III. RESULTS AND DISCUSSION

We first examine the connection between the deviation of
the PDF, p���, from Gaussian and the dependence of the
scalar dissipation �� on the scalar fluctuation �. To do so,
measurements of both p��� and ��� ��� are needed. For the
latter, ideally all the three components ���� /�xi�2 ��� are re-
quired to be measured since

������ = ������/�x1�2��� + ����/�x2�2��� + ����/�x3�2���� .

The nondimensional conditional expectation q���
���� ��� / ����, where ���� is the time-average of �� �and thus
independent of � in the stationary turbulence�, can be ex-
pressed by its components qi�������� /�xi�2 ��� / ���� /�xi�2�
as follows:

q��� =
q1��� + K21q2��� + K31q3���

1 + K21 + K31
, �1�

where Kj1= ���� /�xj�2� / ���� /�x1�2��j=2,3�. If �� and � are
statistically independent, ��� ��� must be equal to ����, so that
q���=1 and qi���=1, for all possible values of �. For the
present study, as indicated earlier, only two spatial derivative
components, i.e., �� /�x1 and �� /�x2, were measured simul-
taneously via a three-cold-wire probe, from which q1��� and
q2��� can be calculated. George and Hussein �27� demon-
strated that the assumption of local axisymmetry of turbu-
lence works well in both jet and wake flows. It is thusde-
duced that q3���	q2���. Indeed, this approximation is valid
in the far field of a round jet �x1 /Dj =30�, see Fig. 7 of Mi
et al. �8�. With this approximation, Eq. �1� reduces to

q��� =
q1��� + 2K21q2���

1 + 2K21
. �2�

To investigate the correlation between ��� ��� and p���, all
three separate sets of ��t� from the three cold wires were
used to calculate p���; and no difference was found in the
results. Figures 1�a�–1�c� show distributions of p���, upper
plots, and q���, lower plots, obtained on the centerline of the
wake at x1 /Dw=20, 40, and 100, respectively. The Gaussian
distribution �G� and the independence case qo=1 are also
indicated for comparison.

Clearly, at x1 /Dw=20 in the wake, p��� is highly asym-
metric and strongly non-Gaussian over the whole range of �.
Correspondingly, q��� increases sharply with �, and there
does not exist any portion of � over which q���	1. Further
downstream, p��� tends to be Gaussian in the neighborhood
of �*=0. While the flow evolves to the region x1 /Dw�40,
both p��� becomes closely Gaussian and q��� is near to
qo=1 at ��* � 
2.5. That is, both approximations p���
	 1


2�
exp�− 1

2�*2�and q���	1 hold over a nearly identical
range of �. This is demonstrated even better by plotting the
ratio K= p��� /G together with q��� in lower parts of Figs.
1�a�–1�c�. It is worth noting that, although the data of q���
are not accurate for ��* � �3, as shown by error bars, due to
rare large-amplitude scalar fluctuations, its trend there is sen-
sible. The trend correctly suggests that the temperature dis-
sipation, ��, associated with “cold” ambient air �around the
negative end of �� is low whereas that with “hot” mixed air
�the positive end of �� is high. The above observations from
the wake also apply for the present jet, see Fig. 2 for
x1 /Dj =40. At the two locations of x2=0 and r1/2 �half radius
of the jet based on the mean temperature�, while the PDF
distribution is about Gaussian at ��* � 
2, the approximation
q���	1is valid over the similar range of �.

The observations from Figs. 1 and 2 can be deduced even
from previous data obtained in various turbulent shear flows.
For example, also in a slightly heated round jet, approxima-
tions qi��*�	1 �where i=1,2 ,3� for ��* � 
2.5 were ob-
served by Mi et al. �8� at x1 /Dj =30 �their Fig. 7;
Rej =19 000� and by Tong and Warhaft �28� for i=2 on the
centerline at x1 /Dw=40 �their Fig. 20; Rej =18 000�. The cor-
responding p���, as reported in Fig. 15�a� of �28�, is nearly
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Gaussian roughly over the same range of �*. The similar
observation may be made from data presented in �29� for a
boundary layer and a jet and in �6,7,30� for grid decaying
turbulence with and without mean temperature gradients.
Note, however, that the previous studies �6–8,28–30� did not
investigate the correlation betweenp��� and q���.

It is hence deduced that, if q���=1 or ��� ���= ���� over
the entire range of �, the scalar PDF should be Gaussian at

all possible �, and vice versa. Since ��� ���
=�0

M��p��� ���d��= ����=constant for all �, where ���0, the
conditional PDF p��� ��� must not be a function of �
�otherwise ��� ��� must depend on ��, i.e., p��� ���
� p��� ,�� / p���= p����. That is, the equality ��� ���= ���� for
all � means that �� and � are statistically independent. It
follows that the ��−� independence should act as a sufficient
and necessary condition for the Gaussianity of p��� in turbu-

FIG. 1. �Color online� The
PDF p��*�, upper plots, vs q��*�,
lower plots, as a function of �*

�� / ��2�1/2 on the centerline at
x1 /Dw=20, 40, and 100 in the
wake flow �Rew=3200�. Symbols:
- - - -, Gaussian distribution,
G=exp�−�*2 /2� /
2�, upper
plots, and q���=qo=1, lower
plots; �, K= p��*� /G, lower plots;
——, �a� p��� and �b� q���; �,
error bars for q���, lower plots.

FIG. 2. �Color online� �a� The PDF p��*� vs
�b� q��*� as a function of �*�� / ��2�1/2 at
x2=0 and r1/2 �half radius� in the jet flow
�Rej =16 000�. Symbols: ——, �a� qo=1 and �b�
Gaussian distribution G=exp�−�*2 /2� /
2�; �,
�a� PDF and �b� K= p��*� /G; ——, �a� q.
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lent jet, wake, boundary layer and grid flows. This deduction,
despite no theoretical proof available, would appear to apply
for any stationary turbulent flows and thus to be more gen-
eral than the analytical result of O’Brien and Jiang �31� that
was derived only for homogeneous turbulence.

Next we inspect the relationship between the overall de-
parture of p��� from Gaussian and the extent to which ��

depends on �. Two parameters are adopted here. The first one
is a “correlation coefficient” between �2 and �� defined by

R �
��2���

��2�����
− 1. �3�

This parameter, previously used in Ref. �6�, differs from the
classical correlation coefficient

� �
���2 − ��2����� − ������

���2 − ��2��2�1/2���� − �����2�1/2 .

However, they have similar properties and are related by
R= �F�−1�1/2����

2� / ����2−1�1/2�. It is expected that R�� as
normally F��3 and ���

2� / ����2�1. Therefore, R should be
more easily estimated accurately, especially when the true �
is close to zero. If �� and � are independent, their joint PDF
p��� ,��= p���p���� and correlation ����2�= ������2�, and thus
both Rand � must be zero. �Note that p���=�−�

� p��� ,��d��

and p����=�−�
� p��� ,��d�.� Otherwise, if �� and � are depen-

dent, R �or �� �0 even when �� and � are statistically un-
correlated or �����=0. This can be proved here. If � is sym-
metric, then p�−��= p��� and also p��� ,−��= p��� ,��. It
follows that F���=�−�

� ��p��� ,��d�� is symmetric about �
and thus that ����n� must be zero when n is odd since
����n�=�����np��� ,��d��d�=�−�

� �nF���d�. For the even n,
however, if �� and � are not independent, p��� ,��
�p���p���� and ����n�������np����p���d��d�= ������n�;
thus R���2�����2�−1����−1−1�0. On the other hand, should
� be asymmetric, the inequality ����n�� ������n� will be
valid for any n. Hence, R truly reflects the degree of the
��−� dependence. Note that R can be estimated via its com-
ponents

Ri �
��2���/�xi�2�

��2�����/�xi�2�
− 1 �4�

by

R =
R1 + K21R2 + K31K3

1 + K21 + K31
− 1. �5�

The second and new parameter defined here is
���S� � + �F�−3�, which allows the deviations of S� and F�

from their Gaussian values of S�=0 and F�=3 to be com-
bined into a single parameter. When p��� is Gaussian, � must
be zero. Conversely, if �=0, then S�=0 and F�=3 so that
p��� is expected to be Gaussian generally in turbulence, see
Jayesh and Warhaft �6�. Otherwise, � is always positive, i.e.,
��0. Obviously, the magnitude of � is a measure of the
degree to which p��� deviates from Gaussian.

Figure 3 reports several sets of the �−R data obtained in
both the wake and jet flows along their centerlines or across

them at different values of x1 or downstream distances. �Note
here that present experimental uncertainties of both � and R
were estimated, roughly with ���= ±1%–±3% and
�R�= ±3%–±8%.� Also presented in the figure is the �−R1

relationship which has been estimated from Jayesh and
Warhaft �6� for decaying grid turbulence with a mean
temperature gradient ���� /�x2=6.06 K/m and a velocity
U1=8.9 m/s. In that case, �� /�x1 was obtained from �� /�t
via Taylor’s hypothesis. As estimated from their PDF data
reproduced, their �S��, not reported, should be 
0.1 so that
the approximation �	�F�−3�, where F� was given in Jayesh
and Warhaft �6�.

Figure 3 demonstrates that � and R may be well linearly
related by

� 	 2.8R �6�

for the present wake and jet flows. Since the data were ob-
tained almost everywhere in the two flows, the result should
represent a general feature of the scalar property in turbu-
lence. We hence believe that relation �6� is generic, although
the factor of 2.8 might be only empirical based on the
present measurements. However, we also note that, for the
homogeneous turbulence of Jayesh and Warhaft �6�, while a
linear relation is evident between � and R1, i.e., �	2.57R1
−0.35, this result is unexpected because the extrapolation to
R1=0 does not lead to the expected �	0. O’Brien and Jiang
�31� proved analytically that the ��−� independence �R=0�
is a sufficient and necessary condition for p��� to be
Gaussian ��=0� for homogeneous turbulence. Since the tem-
perature field of this flow was observed to deviate signifi-
cantly from local isotropy �6�, the isotropic relation
����=3����� /�x1�2� is thus invalid, implying that
R�R1.This may account for the discernible difference be-

FIG. 3. �Color online� Relationship between � and R.
Plane wake �Rew	3200, present�: •, along the centerline at
x1 /Dw=5–100; �, across the flow at x1 /Dw=20, 40, and 100. Cir-
cular jet �Rew	16 000, present�: �, along the centerline at
x1 /Dj =5–100; �, across the flow at x1 /Dj =20 and 40. Grid turbu-
lence: �, derived from Ref. �6�.
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tween the present �−R dependence and that of �−R1 for the
homogeneous turbulence.

The �−R relation suggests that the degree to which ��

depends on � can be measured by the magnitude of �, a
quantity that is much easier to be determined than ��� ���.
This relation is therefore very useful for turbulence and com-
bustion modelers who may require the knowledge about the
��−� dependence. Anselmet et al. �29� concluded from their
boundary-layer and jet data that “the assumption of statistical
independence between �� and � is sound in regions where �
fluctuations are almost symmetrical.” Based on the present
work, however, their conclusion is not accurate and should
be modified to read “. . . where p��� is closely Gaussian.” To
support this point unambiguously, further comments are
made here on the data of p��� and q1��� reported in Jayesh
and Warhaft �6� for the grid turbulence. In that case, for
example, p��� is nearly symmetrical at the last measurement
station. However, the corresponding q1��� varies with � in a
V-shaped fashion �see Fig. 10 of Jayesh and Warhaft �6��,
reflecting a strong ��−� dependence �which is indeed quan-
tified by R1	0.4�. This is obviously at odds with the con-
clusion of Anselmet et al. �29� but can be well explained in
the context of the present work.

IV. CONCLUSIONS

The present study has examined the detailed statistical
dependence of �� on � by directly measuring ��� ��� in two
turbulent flows, i.e., a circular cylinder wake and a round jet.
The correlation between this dependence and the departure
of the PDF from Gaussian has been investigated.

It has been found that the departure of p��� from Gaussian
is strongly related to the degree to which �� depends on �.
This relationship can be quantified well by Eq. �6� or in more
detail by

��2���
��2�����

= C��S�� + �F� − 3�� + 1 �7�

with C	0.36. Based on our data obtained in the wake and
jet flows and also those derived from previous measurements
for grid turbulence and boundary layer, the empirical relation
�7� is considered to be generic. According to Eq. �7�, only
when both S�=0 and F�=3, the equality ��2���= ��2����� for
the ��−� independence is valid. Namely, the assumption of
independence between �� and �, commonly used by combus-
tion modelers, works when and only when the scalar PDF
becomes Gaussian. This applies for both homogeneous and
inhomogeneous turbulent flows.
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